Band-Pass Filters For Visual & Video Astronomy

by

Jim Thompson, P.Eng

March 2011

Table of Contents

1.0 In	ntroduction	3
2.0 S	cope	3
3.0 E	Detector Spectral Response	4
4.0 F	ilter Manufacturers, Types, & Categories	5
5.0 V	isual Comparison Of Filters	7
6.0 C	Conclusions	12
Appendi	x A Band-Pass Filter Summary Table	14
Appendi	x B Band-Pass Filter Spectral Transmissivities	15
Appendi	x C Per-Integration Time Images	16
List of F	ligures ligures	
Figure 1	Spectral Response Of The Sony ICX418AKL-A CCD	4
Figure 2	Relative Spectral Response - Human Eye vs. Mallincam	5
Figure 3	Minimum Recommended Telescope Aperture For Visual Observation	7
Figure 4	Band-Pass Filters Used In Test - Part 1	8
Figure 5	Band-Pass Filters Used In Test – Part 2	9
List of T	ables	
Table 1	Summary Of Band-Pass Filter Categories	6

1.0 Introduction

Almost a year ago now I shared my astronomy filter research with the OAOG and Mallincam community. That personal project came about from my own selfish desire to know as much as I could about filters, both planetary (colour) and deep-sky (band-pass), so that I could make an informed purchase and later informed application of these filters. At the time I was devoted to observing visually, primarily from my backyard in Ottawa. Since that time I have been drawn into the world of video astronomy, and as a result I have been the proud owner of a Mallincam Xtreme since early January this year. With this recent shift in my observing methodology, some rework of my filter research was required.

2.0 Scope

A lot of technical data was compiled on band-pass type astronomical filters in my original research, but that data was compiled from the perspective of using the filters for visual observation only. Opening up the use of these filters to video astronomy as well results in some of the filters I ignored before now being of interest. Video astronomy also provides a very convenient method of comparing the performance of different filters not just using plots and % Luminous Transmissivity (%LT) numbers, but visually as well.

This whitepaper presents the revision I've made to my filter research specifically related to use with my Mallincam astrovideo camera. The following changes specifically are included:

- added 18 filters, mostly H-alpha which are not suitable for visual use but are suitable for video astronomy;
- calculated %LT for all filters based on spectral response of Sony CCD used in the Mallincam; and
- captured images using my Mallincam Xtreme of a fixed target (M42), using a range of band-pass filters, over a range of integration times.

The final task in my scope is an important one, as it provides some way of seeing firsthand how the use of a particular filter affects not only the view but technical issues like total integration time which in turn affects the importance of tracking accuracy (guided vs. unguided). The images collected are also useful for the visual observer since they give an idea what one can hope to achieve for contrast improvement, as will be discussed later.

3.0 Detector Spectral Response

In my filter research from a year ago I presented what is understood to be the sensitivity of the human eye to various wavelengths of light, both when light adapted (photopic) and dark adapted (scotopic). In order to consider the Mallincam or other video imaging device, a spectral sensitivity for this type of sensor was needed. The technical specification document for the Sony CCD sensor installed in the Mallincam has the spectral response of each of the four colour channels, CMYG. I took a straight average of these responses to get the average sensor response, as shown in Figure 1. The normalized average response is used later in the calculation of %LT. The spectral sensitivity of the Mallincam is compared to the human eye in Figure 2.

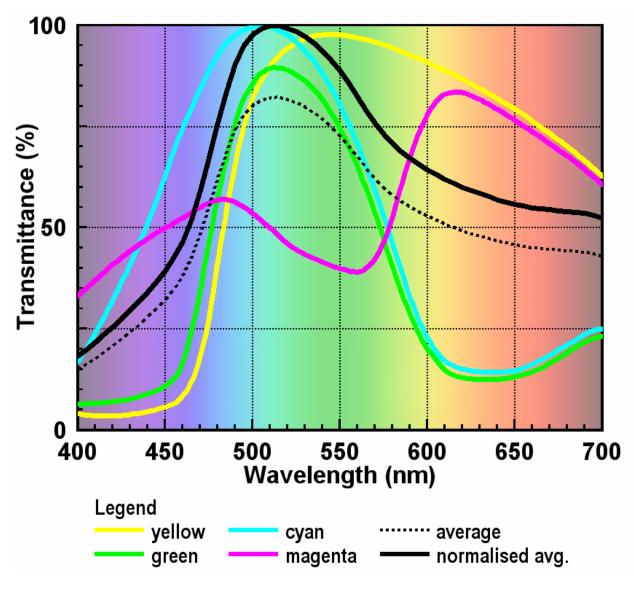


Figure 1 Spectral Response Of The Sony ICX418AKL-A CCD

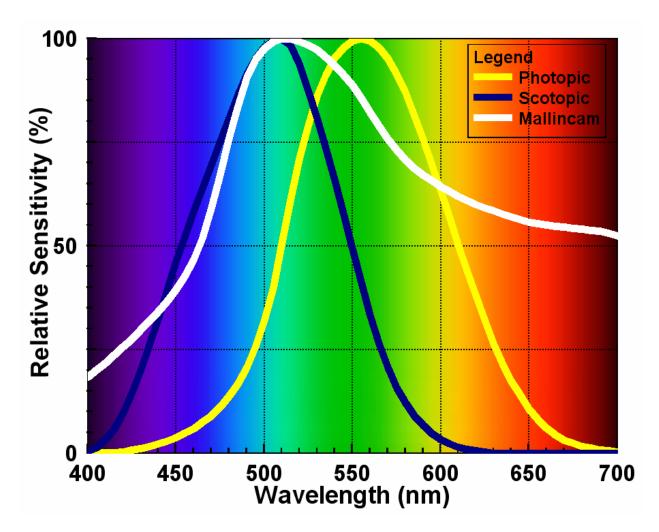


Figure 2 Relative Spectral Response - Human Eye vs. Mallincam

The Mallincam, as well as many other (unfiltered) CCD devices, has a much higher sensitivity in the red end of the spectrum, but is otherwise very similar to the human eye.

4.0 Filter Manufacturers, Types, & Categories

Using band-pass filters with CCD devices opens up a range of wavelengths that the human eye is not normally sensitive to, from 600 to 700nm and even into the infrared (700+). In my initial research I completely ignored H-alpha type filters since they have no application in visual astronomy. They do have application to video astronomy however, so I have now added them to my already exhaustive list of filters. Eighteen filters in total have been added, 13 H-alpha filters plus a couple of miscellaneous ones: Astronomik OIII CCD, Astronomik H-beta CCD,

Astronomik CLS CCD, Baader Planetarium Solar Continuum, and FLI OIII. This brings the total to 82 filters!

Appendix A contains a summary table of all 82 band-pass type filters. Appendix B contains the spectral transmissivity plots for these filters. The same filter categories defined in my first whitepaper are re-used again here, with the addition of the H-alpha filters. Table 1 below summarizes the 13 filter categories as well as the recommended use of each category of filter. Also listed in the table is the minimum recommended telescope aperture for each filter category when they are being used for visual astronomy. For those of you looking for a limit that is more filter specific, Figure 3 shows the relationship between filter % Scotopic Luminous Transmissivity (%SLT) found in Appendix A and telescope aperture. Table 1 also shows the amount by which one can expect the Mallincam integration time to increase for a fixed target when the particular category of filter is used. A more filter specific value of integration time increase can be calculated by simply taking the inverse of the % Mallincam Luminous Transmissivity (%MLT) which is also found in the table in Appendix A. For example a filter with %MLT = 50% would need an integration time that is approximately 2x longer than without a filter.

Category	Prerequisite	Application	Min. Aperture for Visual Use	MC Integration Time
O-III Group A	Allow both doubly ionized Oxygen wavelengths to pass	View & image emission/planetary nebulae & supernova remnants under heavy light pollution	5.5" (140mm)	4-14x
O-III Group B	Allow only one doubly ionized Oxygen wavelength to pass	Image emission/planetary nebulae & supernova remnants under heavy light pollution	not suitable	9-40x
H-beta Group A	Pass H-beta wavelength with >90% transmission	View & image faint emission nebulae, with or without light pollution	8" (203mm)	10-21x
H-beta Group B	Pass H-beta wavelength with <90% transmission	Image faint emission nebulae, with or without light pollution	not suitable	10-48x
H-alpha Group A	H-alpha pass band is >10nm wide	Image emission/planetary nebulae & supernova remnants under heavy light pollution	not suitable	5-40x
H-alpha Group B	H-alpha pass band is <10nm wide	Image emission/planetary nebulae & supernova remnants under heavy light pollution	not suitable	42-71x
Narrow Band	H-beta + O-III pass band is <35nm wide	View & image emission/planetary nebulae & supernova remnants under moderate-to-no light pollution	4.5" (114mm)	3-9x
Medium Band	H-beta + O-III pass band is >35 but <50nm wide	View & image emission/planetary nebulae & supernova remnants under moderate-to-no light pollution	3.5" (89mm)	3-5x
Wide Band	H-beta + O-III pass band is >50 but <70nm wide	View emission/planetary nebulae & supernova remnants under mild-to-no light pollution; image all deep-sky objects	2.5" (64mm)	2-4x
Extra Wide Band	H-beta + O-III pass band is >70nm wide	View or image all objects under mild-to-no light pollution	no limit	1.5-2x
Multi Band	More than two major pass bands in the visible range	View or image all objects under mild-to-no light pollution	no limit	1.7-1.9x
Special A	Filters esp. designed for planets or other special object viewing	Baader Solar for Sun; Lumicon comet for comets; Orion Mars for Mars; all others for contrast improvement while viewing Moon or planets	Lumicon comet 5.5", all others no limit	1.6-20x
Special B	Special filters for contrast enhancement based on Neodymium infused glass	Contrast improvement while viewing Moon or planets	no limit	1.4-1.9x

Table 1 Summary Of Band-Pass Filter Categories

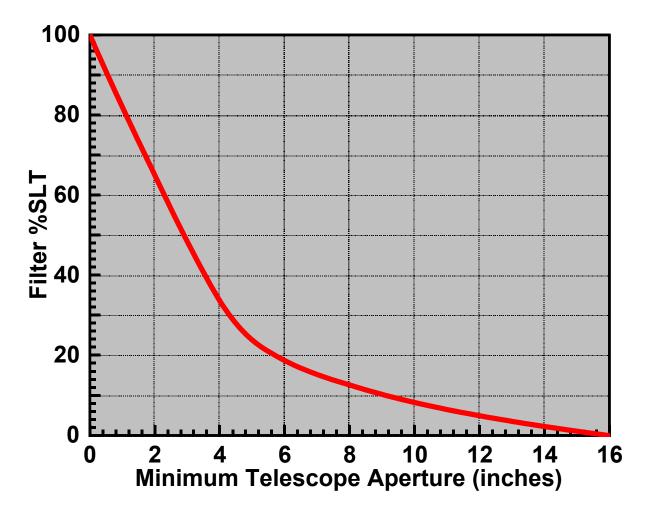


Figure 3 Minimum Recommended Telescope Aperture For Visual Observation

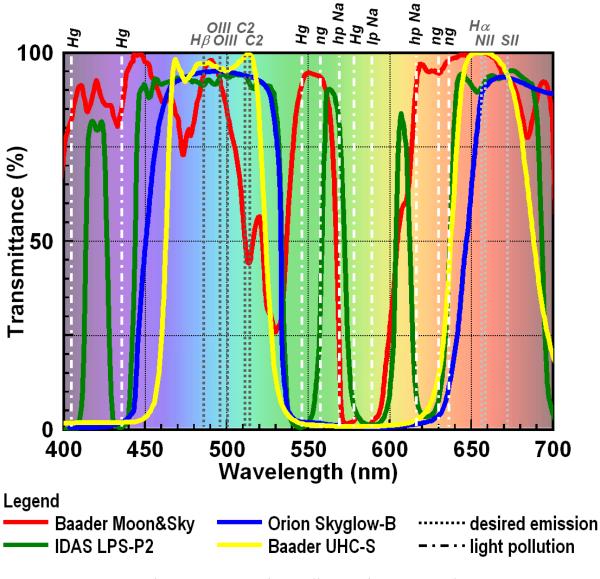
5.0 Visual Comparison Of Filters

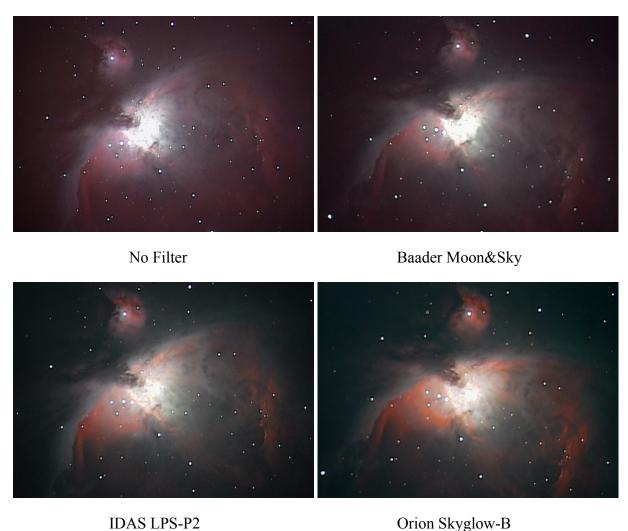
Spectral transmissivity plots and %LT values are useful metrics for comparing different filters to each other. They are especially useful when deciding what filter to buy with a filter category. But how does one decide what filter category is best for their application? My suggested applications in Table 1 provide some guidance, but the real test for me is visually comparing the view that each filter produces. It has probably become obvious to everyone by now that I am a bit of a curious little monkey. In my fiddlings and experimental viewings I have compiled a fairly broad sampling of band-pass type filters:

- Baader Planetarium Moon & Skyglow
- Astro Hutech IDAS LPS-P2

- Orion Skyglow Broadband
- Baader Planetarium UHC-S
- Astronomik UHC
- Astronomik H-beta
- Astronomik OIII
- Lumicon #29 Dark Red + Baader Planetarium UV/IR Blocker

The last filter in my list was just for fun...boy was I pleasantly surprised by the results, as you will see later. Figures 4 and 5 show the spectral transmissivity curves for the eight filters.




Figure 4 Band-Pass Filters Used In Test - Part 1

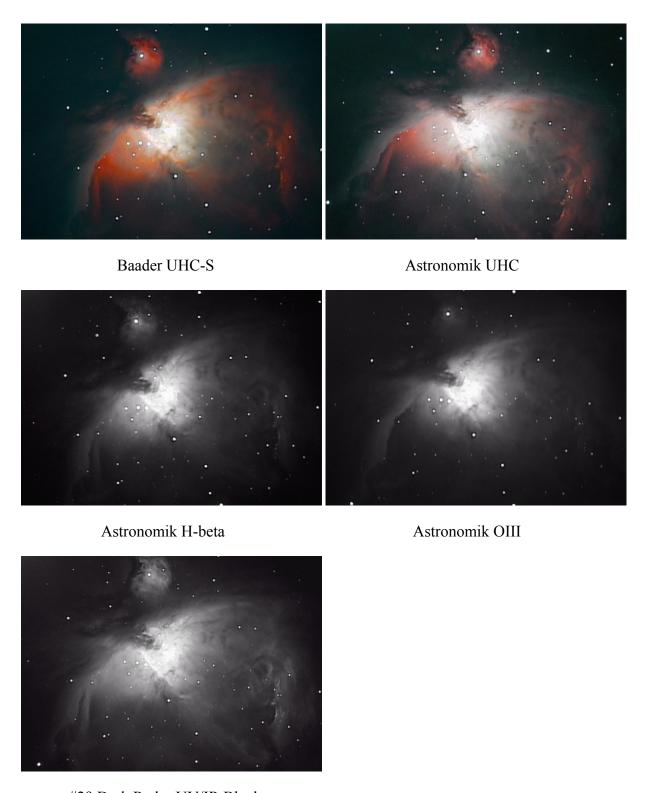


Figure 5 Band-Pass Filters Used In Test – Part 2

My images were collected in as consistent a manner possible, with the lovely M42 as the target. I used my Meade 8" LX10 telescope with Meade f/3.3 focal reducer on my Orion Atlas EQ/G mount, plus my Mallincam Xtreme astrovideo camera to collect the images. Each image was recorded at a fixed Hue (60), Saturation (75), Sharpness (2), AGC (5), and APC (8). Brightness was adjusted for each image to give a well balanced image with dark background, and Contrast was held mostly at 40 with some images varying up to 45 and 50. I recorded images at a fixed set of integration times: 2.1s (integration off), 4sec, 8sec, 12sec, 16sec, 24sec, 32sec, 48sec, 60sec, 75sec, 90sec. For each integration time I recorded images from three refreshes, which were then later hand stacked into one image for comparison purposes. No additional processing was performed on the per-integration time images. The images can be found in Appendix C. Note that the H-beta, OIII, and #29 Dark Red filters were recorded in B&W since the filters have such narrow wave bands they only let one colour through anyway, cyan, green, and red

respectively. Many of the filters did not make it to 90sec integration as the view was totally over exposed and/or I ran out of brightness adjustment. In addition to the per-integration time images, I made multi-exposure hand stacks using 4 different integration times, selected to have as close to the same relative exposure between each filter tested. The results from this can be found below in Figure 6. I did use tone balancing on these multi-exposure stacks in order to give the sexiest image possible with the selected image data.

#29 Dark Red + UV/IR Blocker

6.0 Conclusions

In the end I was very happy with the results of my testing. Some of the filter images are slightly blurry, suggesting that I did not have the focus quite right on them, but all-in-all the images turned out nice. My conclusions on each of the filters tested are as follows:

None: The stacked image looks pretty good surprisingly, but there is an obvious hue to the background due to the light pollution. Integration times were as short as they can be, plus there are lots of stars, which is okay on the periphery, but in the trapezium area it results in the image being over exposed.

Baader M&S: Seems to provide a slight improvement over no filter. Hue due to light

pollution seems to be mostly gone. Integration times still short.

LPS-P2: Provides nice colour balance and finer details in the nebula. Background

is dark, and integration times are low. Stars still fairly bloated at longer

integration times.

Orion Skyglow-B: More intense reds, but blues still visible. Contrast similar to slightly

worse than LPS-P2. At longer integration times, stars had strange coma

shape.

Baader UHC-S: Image very red, almost orange. Contrast similar to slightly less than Orion

Skyglow-B.

Astro. UHC: The nicest colour image in my opinion. Very nice colour balance, and

wispy blues much more refined. Finer contrast and detail in dark lanes, esp. in M43. Very nice dark background, and stars are small and round.

Astro. H-beta: Okay contrast, but very long integration time to get it. Seem to get the

same from #29 but at shorter integration time.

Astro. OIII: Not very exciting, interesting how only the blues (OIII) regions are

coming through and none of the H-alpha (red), but the resulting image is

not very pleasing in my opinion. Very long integration times.

#29 + UV/IR: Wow, what a pleasant surprise! This very inexpensive, very wide band H-

alpha filter produced what I feel are very impressive images. The best for contrast overall I think. I wonder what a proper H-alpha filter would do?

Hmmmmm...

In my opinion, the LPS-P2 and Astronomik UHC gave the best detailed and colour balanced images. I am however curious now what a filter from the Narrow Band category would produce.

There is a definite trade off between higher contrast in the image and longer integration times. I was lucky to get a good polar alignment for these images and had good weather to leave my setup outside for 3 days so that I could get all the images. I had good tracking up to 90sec with no guiding during my tests, but most of the time (with having to setup and teardown every night) I can only get 30-40sec.

For the visual observers out there, I hope you can get some useful information out of this work as well. For example, if you equate integration time to the light gathering capacity of a telescope (roughly equal to aperture²), you can get an idea what impact bigger apertures have on your ability to see detail. You can also visually see how the image gets more contrast but dimmer as a result of using each filter when you compare images of the same integration time.

One important behavior that bares mention is how band-pass filters respond in short focal length telescopes. The spectral transmissivity curve for these filters tends to shift back and forth with wavelength as the angle of the filter to the light beam is changed. In the case of short focal length scopes, the angle of the light passing through the middle of the filter is different enough from the light passing through the outer edge that there will be a visible difference in performance. This centre-to-edge variation is progressively more important as the filter's pass band gets narrower, and may become a serious issue with the narrowest filters (eg. H-beta, OIII, H-alpha, & Narrow Band). I don't have any observational data to know what the practical lower focal length limit is, so filter users should just be aware and keep their eyes open for this phenomenon, especially if they use small aperture fast focal ratio refractors or possibly even the Hyperstar lens system some have on their SCT. One way of mitigating this problem is to move the filter forward in the optical train, ahead of focal reducers, where the light rays are more parallel (ie. area of longer affective focal length).

I hope my little whitepaper is interesting and useful to someone out there. I am convinced that large improvements to the quality of the image can be achieved when combined with the proper telescope aperture (visual & video) or appropriate integration time (video only). This is definitely true for emission/planetary nebulae and super nova remnants. I assume the impact will be less so for clusters, galaxies, and reflection nebulae since they are broad spectrum targets (filter cuts emission from target along with cutting out light pollution). If you have any questions, feel free to contact me.

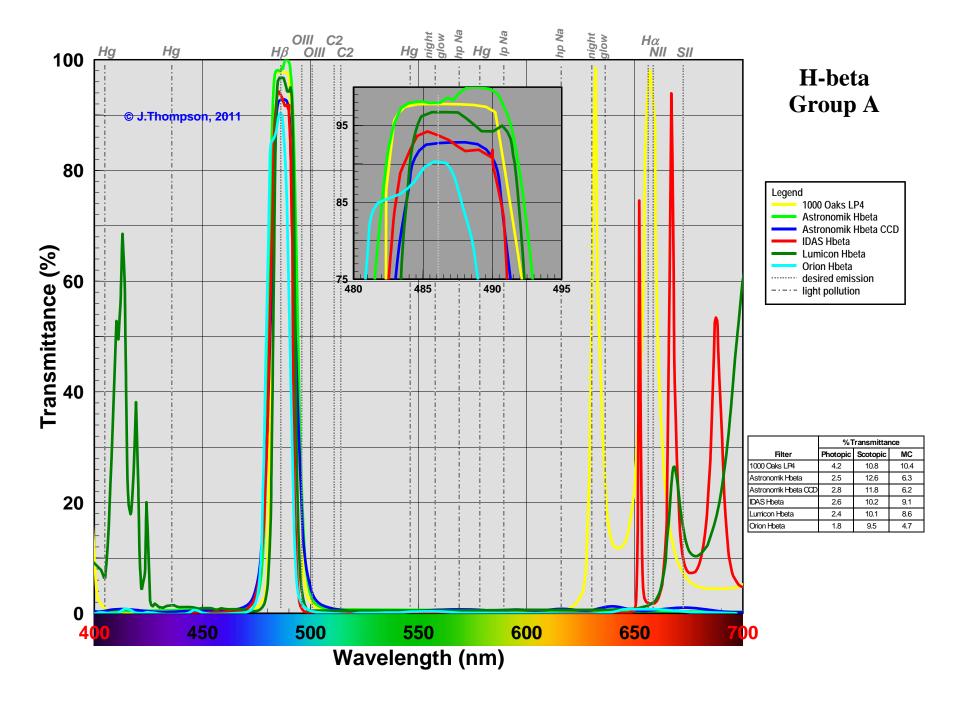
Cheers!

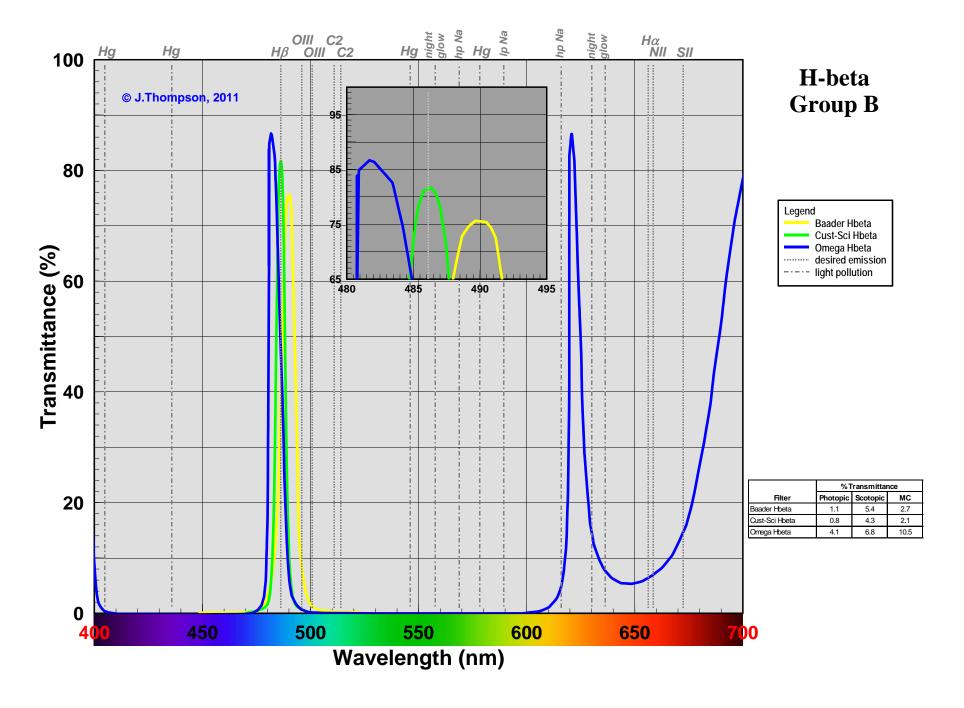
Jim Thompson

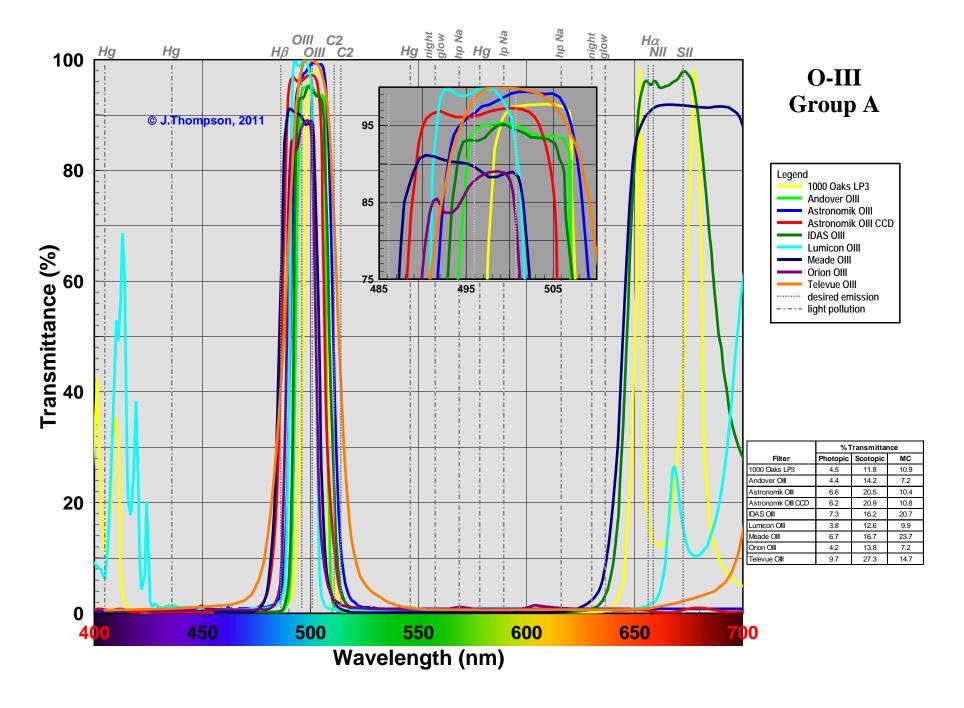
jimmythepuker2@yahoo.ca

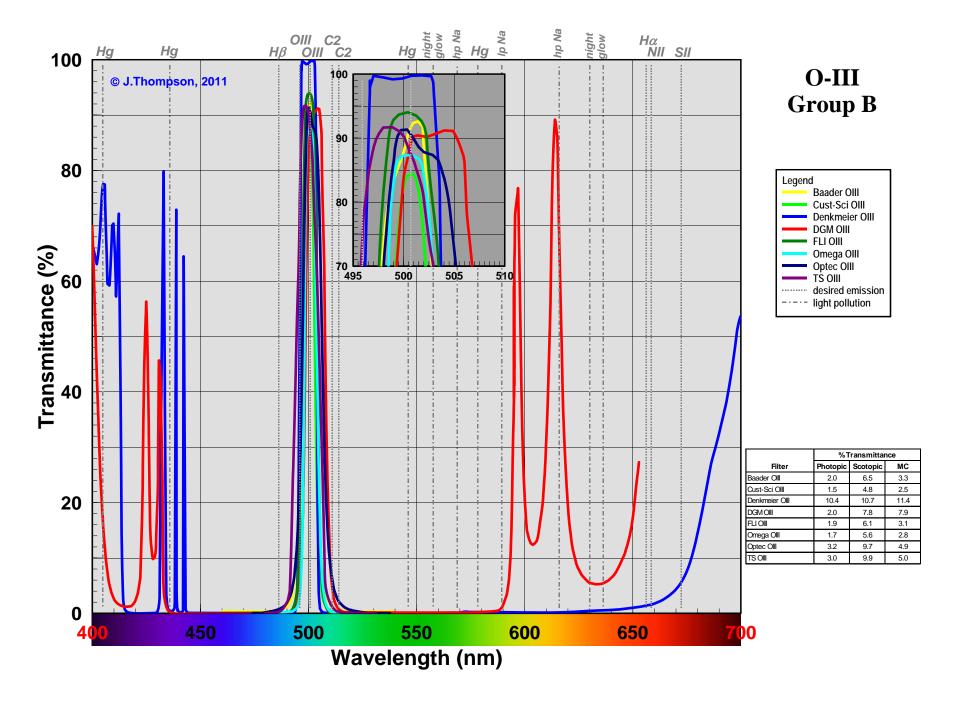
Appendix A Band-Pass Filter Summary Table

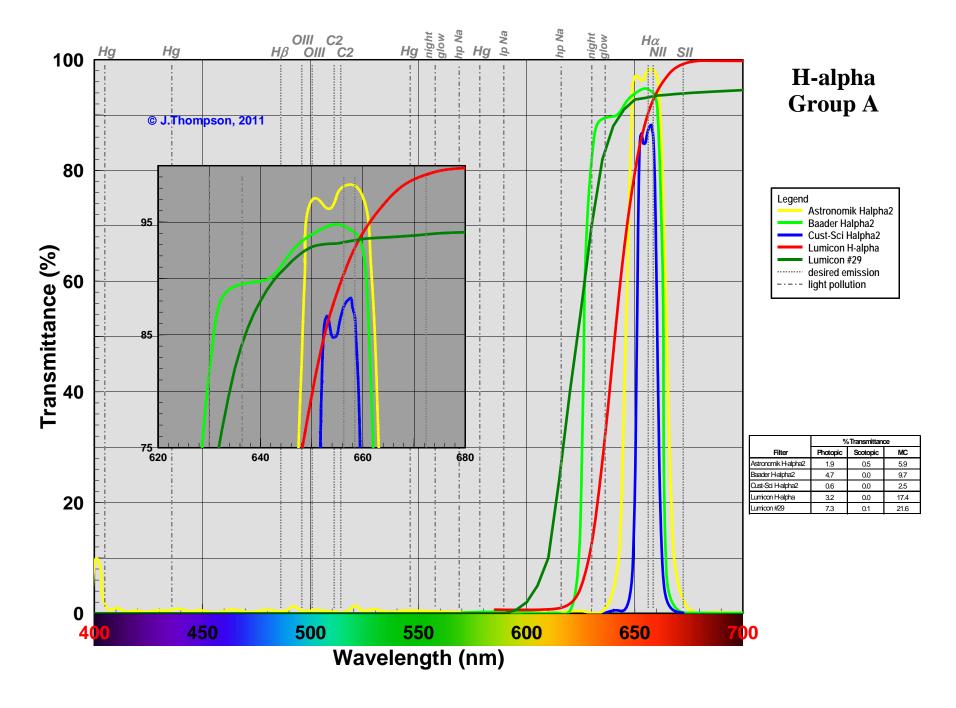
Deep-Sky Filter Summary Table


							% Luminous Transm		% Luminous Trans	nsmissivity	
#	Manufacturer	Model	Full Name	Manuf.'s Recommended Use	Contact	Category	Photopic	Scotopic	Mallincam		
1		LP-1	LP-1 Broadband	Slight to moderately light polluted areas		wide band	16.8	50.6	39.0		
2		LP-2	LP-2 Narrowband	Heavily light polluted areas		narrow band	9.3	26.5	18.7		
3		LP-3	LP-3 O-III	Diffuse & planetary nebulae		O-III A	4.5	11.8	10.9		
4	1000 Oaks	LP-4	LP-4 H-beta	Horsehead, California, & other faint nebulae	www.thousandoaksoptical.com	H-beta A	4.2	10.8	10.4		
5	Andover	O-III	O-III	Heavily light polluted areas, planetary nebulae	·	O-III A	4.4	14.2	7.2		
6	Corporation	3ch Nebula	3 Channel	Light polluted areas, planetary & emission nebulae	www.andovercorp.com	narrow band	12.5	32.9	30.9		
			Anti-Light Pollution,	block light pollution, improve view of emission							
7	Antares	ALP	Broadband	nebulae	www.antaresoptical.com	wide band	26.0	59.6	46.6		
8		H-alpha1	H-alpha 3nm	CCD imaging		H-alpha B	0.4	0.0	1.4		
9	Astrodon	H-alpha2	H-alpha 5nm	CCD imaging	www.astrodon.com	H-alpha B	0.4	0.0	1.6		
				narrow-band nebular + O-III passband modifier							
10		O-III	IDAS O-III	filter		O-III A	7.3	16.2	20.7		
				narrow-band nebular + Hbeta passband modifier							
11		H-beta	IDAS H-beta	filter		H-beta A	2.6	10.2	9.1		
			IDAS Light Pollution	Light polluted areas, nebulae viewing, color							
12		LPS-P1	Suppression v1	balanced photography		multi band	46.3	73.5	56.0		
			IDAS Light Pollution	Light polluted areas, nebulae viewing, color							
13		LPS-P2	Suppression v2	balanced photography		multi band	44.9	72.7	59.2		
14		LPS-V3	Band Nebular	Provide maximum contrast between key emission lines and light polluted sky		wide band	22.5	54.3	38.0		
45	A - to - I but b	1.00.1/4		Provide maximum contrast between key emission		and the form of	00.0	54.4	00.5		
15	Astro Hutech	LPS-V4	Band Nebular	lines and light polluted sky f3 to f15 & >6" aperture, substantial contrast gain	www.sciencecenter.net/hutech/	wide band	20.6	54.1	33.5		
				on emission & planetary nebulae & supernova							
16		O-III	O-III	remnants		O-III A	6.6	20.5	10.4		
17		O-III CCD	O-III CCD	CCD imaging	·	O-III A	6.2	20.9	10.4		
17		0-III CCD	0-III CCD	f4.5 to f6 optimal, f3.5 to f15 possible, >8"	•	O-III A	0.2	20.9	10.6		
18		H-beta	H-beta	aperture, dim hydrogen emission nebulae		H-beta A	2.5	12.6	6.3		
19		H-beta CCD	H-beta CCD	CCD imaging	·	H-beta A	2.8	11.8	6.2		
13		TT BOILD GOD	11 bota oob	LPR, better views of deep-sky-objects, f4 to f15 &		TI DOLU 71	2.0	11.0	0.2		
20		UHC	Ultra High Contrast	>4" aperture, CCD and DSLR photography		medium band	11.8	33.6	33.0		
21		UHC-E	Ultra High Contrast -	increase contrast between target and night sky,		medium band	23.9	42.5	38.2		
				budget filter for visual LPR, very good colour							
22		CLS	"Clear Sky"?	balance for photography (film or digital)		extra wide band	31.1	67.5	52.0		
23		CLS CCD	"Clear Sky"? CCD	CCD imaging	[extra wide band	24.3	65.8	47.6		
24		H-alpha1	H-alpha 6nm	CCD imaging		H-alpha B	0.8	0.5	2.4		
25	Astronomik	H-alpha2	H-alpha 13nm	CCD imaging	www.astronomik.com	H-alpha A	1.9	0.5	5.9		
				maximum contrast and image sharpness, emission							
26		O-III	O-III Visual Nebula	& planetary nebulae		O-III B	2.0	6.5	3.3		
27		H-beta	H-beta Narrowband CCD	maximum contrast and image sharpness		H-beta B	1.1	5.4	2.7		


	T I		I	improved contrast over typical broadband filters					
00		11110 0	LILIC C Nahala	without sacrificing stars like other UHC filters,		wide bend	00.5	547	40.4
28	<u>.</u>	UHC-S	UHC-S Nebula	great for smaller scopes, good for imaging		wide band	22.5	54.7	42.4
				neodymium infused glass, enchances both					
				planetary & deep sky contrasts by reducing				70.0	70.7
29	<u> </u>	Moon&Sky	Moon & Sky Glow	skyglow from LP & Moon, RGB intensifier		special B	55.3	72.3	70.7
				neodymium infused glass + minus violet filter,					
				boosts lunar & planetary contrast, cuts skyglow,					
		0	Ott Dt	totally eliminates de-focused blue halo in		an a sial D	50.4	40.0	50.0
30	<u> </u>	Contrast	Contrast Booster	achromats, natural colour balance, great for Mars		special B	53.1	48.9	56.0
				enhance solar granulation & sunspot detail, boost					
				contrast & reduce atmos. Turbulence, also good					
31	<u> </u>	Solar	Solar Continuum	for star testing telescopes		special A	8.4	7.0	4.9
32	Baader	H-alpha1	H-alpha 7nm	CCD imaging		H-alpha B	0.5	0.0	2.2
33	Planetarium	H-alpha2	H-alpha 35nm	CCD imaging	www.baader-planetarium.com	H-alpha A	4.7	0.0	9.7
				a fine light pollution filter that passes a very high					
			Broadband Nebula -	percentage of light originating from stellar sources,					
			Light Pollution	blocks light at wavelengths typically found in					
34	Burgess Optical	LPR	Reduction	outdoor lighting	www.burgessoptical.com	wide band	26.9	47.7	26.8
				one of most commonly used filters by researchers					
				and serious amateurs, useful for capturing high					
35		O-III	Narrowband O-III	resolution images with high light pollution		O-III B	1.5	4.8	2.5
				one of most commonly used filters by researchers					
				and serious amateurs, useful for capturing high					
36		H-beta	Narrowband H-beta	resolution images with high light pollution		H-beta B	8.0	4.3	2.1
				one of most commonly used filters by researchers					
				and serious amateurs, useful for capturing high					
37		Multiband	III / H-alpha	resolution images with high light pollution		narrow band	5.5	21.5	12.9
38	Custom	H-alpha1	H-alpha 4nm	CCD imaging		H-alpha B	0.4	0.0	1.5
39	Scientific	H-alpha2	H-alpha 10nm	CCD imaging	www.customscientific.com	H-alpha A	0.6	0.0	2.5
		_	High Performance O-	maximum enhancement of emission and reflective					
40	1	O-III	III	nebula		O-III B	10.4	10.7	11.4
				UHC type, small & fainter emission & planetary					
41	1	NPB	Nebula	nebula, retains natural star colours		narrow band	12.3	22.6	25.7
				smaller scopes (4-6"), compromise between UHC					
			Very High	and broadband, enhance view of emissioni &					
42	<u> </u>	VHT	Throughput Nebula	reflective nebula with minimum star dimming		medium band	14.1	33.3	34.5
				aids visual observation of galaxies & Milky Way					
I			Galaxy Contrast	dust clouds & dark lanes, general purpose LPR,					
43	DGM	GCE	Enhancement	most of visible spectrum passed	users.erols.com/dgmoptics/	extra wide band	33.4	67.7	62.8
				the square transmission curves mean only					
				photons in the desired emission bandpasses of the					
				observed object are viewed, red halos around					
				stars will not be present, a more natural and					
44	1	O-III	Hi Def O-III	contrasty view results		O-III B	2.0	7.8	7.9
_	•				•				


	·			the square transmission curves mean only					
				photons in the desired emission bandpasses of the					
				observed object are viewed, red halos around					
			Hi Def Ultra High	stars will not be present, a more natural and					
45		UHC	Contrast	contrasty view results		medium band	10.7	38.8	24.6
45	•	OHC	Contrast	very unique contrast enhancement filter, see		mediam band	10.7	30.0	24.0
	Denkmeier			brighter greens and reds, greatly improve contrast					
46	Optical	Planetary	Hi Def Planetary	of Mars, Jupiter, & Saturn	www.denkmeier.com	special A	52.8	54.3	62.1
47	Optical	O-III	O-III 8nm	CCD imaging	www.denkineler.com	O-III B	1.9	6.1	3.1
48	FLI	H-alpha	H-alpha 8nm	CCD imaging	www.flicamera.com	H-alpha B	0.6	0.0	2.1
70	11	ттарпа	TT diplia offili	narrow band pass, near-photographic views of	www.mcamera.com	TT diprid B	0.0	0.0	2.1
				Veil, Ring, Dumbbell, Orion, use on					
				diffuse/planetary/faint nebulae, optimum exit pupil					
49		O-III	O-III	L2-5mm/D3-7mm		O-III A	3.8	12.6	9.9
75		<u> </u>	O III			O III /	0.0	12.0	5.5
				extremely faint nebulae like California, Cocoon &					
		115-1-	11.5-4-	Horsehead, used best under clear skies & large		III bara A	0.4	40.4	0.0
50		H-beta	H-beta	aperture, optimum exit pupil L3-7mm/D4-7mm		H-beta A	2.4	10.1	8.6
				and the second of the second o					
				superb views of Orion, Lagoon, Swan and other					
l				extended nebulae, best all-around dark-sky					
51		UHC	Ultra High Contrast	nebualr filter, optimum exit pupil L1-4mm/D2-6mm		narrow band	7.0	24.8	16.5
				LPR, imaging of all types of deepsky objects, high					
			.	contrast views of Martian polar caps, optimum exit					
52		Deepsky	Deepsky	pupil L0.5-2mm/D1-4mm		wide band	23.8	60.6	44.0
50		C	CIA/ANI	enhances cyanogen wavelength in comet tails,		ama sial A	0.0	04.0	44.0
53 54		Comet	SWAN H-alpha Pass	narrow pass band allows OII and C2		special A	9.3	21.3 0.0	11.0 17.4
55		H-alpha #29	#29 Dark Red	CCD imaging planetary viewing		H-alpha A H-alpha A	3.2	0.0	21.6
56	Lumicon	0-III	0-III	Diffuse & planetary nebulae	www.lumicon.com	O-III A	7.3 6.7	16.7	23.7
36		U-III	0-111	striking contrast between nebula and background,		O-III A	0.7	10.7	23.1
				best with >25mm ep , not intended for					
57		Narrow	Norrowband Nahular	photography, useful on fewer objects but those objects are greatly enhanced		narrow band	8.9	28.1	25.2
57		ivaliow	Narrowbarid Nebular	LPR, photography, enhances nebula mostly but		nanow pand	0.9	20.1	25.2
58	Meade	Wide	Wideband Nebular	does improve contrast on galaxies	www.meade.com	medium band	10.2	37.8	29.2
36	ivieaue	wide	Wideballd Nebulai	precision interference filter, narrow band pass,	www.meade.com	medium band	10.2	31.0	29.2
59		O-III	OIII Narrow CCD	best for CCD imaging		O-III B	1.7	5.6	2.8
59		0-111	OIII Naiiow CCD	precision interference filter, narrow band pass,		O-III B	1.7	5.0	2.0
60		H-beta	Hb Narrow	best for CCD imaging		H-beta B	4.1	6.8	10.5
- 00	•	i i-beta	TIDINATIOW	precision interference filter, relatively broad pass		TI-bela b	4.1	0.0	10.5
61		Wide	Hb&OIII Nebula II	band allwos Hbeta & OIII wavelengths		wide band	20.2	49.4	25.5
- 01	•	vvide	TIDGOTT NEDUIA II	precision interference filter, narrow pass band		wide parid	20.2	70.7	20.0
62		Narrow	Hb&OIII Nebula	allows Hbeta & OIII wavelengths		medium band	12.0	34.3	25.1
02	•	Nullow	1 IDGOIII 140DUIA	multi band interference filter, cuts out prominent		modium band	12.0	07.0	20.1
			Hg&Na Skylight	light pollution wavelengths but maintains high					
63		Hg&Na	Reject	overall transmission		extra wide band	52.5	72.8	65.0
- 55	•	i igaita	1.0,000	enhances recording of colour images, especially		OATA TING DUTIN	02.0	. 2.0	55.5
				on bright objects like moon and planets, reduces					
			Colour Enhancing	light pollution, removes cyan and yellow that mute					
64	Omega Optical	Imaging	LPF	Hue	www.omegafilters.com	multi band	50.4	50.9	51.5
04	Jinega Optical	iiiugiiig		i ido	w.omegamero.com	main bana	JU.7	00.0	01.0


65		O-III	O-III	Diffuse & planetary nebulae		O-III B	3.2	9.7	4.9
66		Deepsky	Deepsky	blocks UV, violet, & sodium light completely		extra wide band	33.6	59.4	55.6
67	Optec Inc.	H-alpha	H-alpha	CCD imaging	www.optecinc.com/astronomy	H-alpha B	0.6	0.0	2.3
				reveal more wondrous details when viewing					
				nebulas, completely blocks all other visible					
68		O-III	O-III	wavelengths, for >8" aperture, visual use only		O-III A	4.2	13.8	7.2
				visually capture elusuve faint nebulas, perhaps					
				only way to see Horsehead, California, & Cocoon,					
				best with a moderate to large aperture scope &					
69		H-beta	H-beta	clear dark skys		H-beta A	1.8	9.5	4.7
				for deep-sky observers at highly light polluted					
				sites, enhances the sky presence of a significant					
70		Ultrablock	Ultrablock	number of fainter deep-sky objects		narrow band	8.7	26.5	13.6
				enhances deep-sky observing in moderately light					
				polluted skies, improves the view of nebulas,					
71		Skyglow-B	Skyglow Broadband			extra wide band	26.5	64.8	47.6
				deep-sky CCD or DSLR imaging from light polluted					
				skies, enhances all types of deep-sky objects					
				(galaxies, nebulas, clusters), preserves neutral					
72		Skyglow-I	Skyglow Imaging	colour balance		multi band	61.9	68.5	60.2
				high performance visual filter for improving views					
				of Mars, improves view of polar ice caps, subtle					
				mare shadings, cloud activity, dramatic					
73		Mars	Mars	improvements even in smaller telescopes		special A	29.2	52.6	53.7
			l						
74	Orion		H-alpha Narrow Band	CCD imaging	www.telescope.com	H-alpha B	0.5	0.0	1.8
75	ļ	NEB1	Nebula	-		medium band	17.7	41.1	23.3
76 77		CE1	Contrast Enchance	-		special A	60.9	50.1	60.4
17		PC1	Planetary Contrast	-		special A	40.7	35.9	36.5
70	0 0	NDO	Neodymium				40.0	55.4	50.0
78	Sirius Optics	NPC	Planetary Contrast	- Charles to the control of the cont	out-of-business	special B	49.0	55.1	53.3
70		0 111	0 !!!	narrowband nebular filter for observing and		0 111 D	0.0	0.0	5.0
79	TO 0-11-1	0-111	O-III	imaging		O-III B	3.0	9.9	5.0
80	TS Optics	UHC		contrast boosting filter for deep sky observing	www.telescope-service.com	narrow band	5.9	22.2	11.2
81		O-III	Bandmate O-III	enhances planetary nebulae in larger scopes		O-III A	9.7	27.3	14.7
				high-performance dielectric squarewave "UHC"					
00	T-1	Nahuate:	Dandasta Nahiiri	type general purpose narrow-band filter, great for	telerine	and a discount to a second	440	40.5	00.4
82	Televue Optics	Nebustar	Bandmate Nebustar	all nebulae types and instrument sizes	www.televue.com	medium band	14.9	42.5	22.1


Appendix B Band-Pass Filter Spectral Transmissivities

