

OAOG Workshop #2 (March 22nd, 2013)

REMOTE CONTROL OBSERVING

Presented by: Jim Thompson

WHAT IS RCO?

- Live observing through your telescope without you being right next to it
- Requires ability to see what your scope sees, and to tell your scope where you want it to point
- Pros:
 - observe during unfavorable conditions (cold, bugs)
 - allow easier use of resources (books, maps, web)
 - allow easier sharing with friends & family
- ► Cons:
 - more complicated & more expensive

A BASIC RCO SETUP

HARDWARE REQUIREMENTS FOR RCO

Must have:

- Remotely controllable mount (GOTO)*
- 2. Remotely controllable video camera
- 3. Video display*
- *Display & mount control needed remotely AND at scope (during setup)

Nice to have:

- 1. Computer control of mount
- 2. Remotely viewable finder scope
- 3. Remote control focuser

A MORE TYPICAL RCO SETUP

THE MOUNT

- Need a tracking GOTO mount
 - ▶ GEM: best tracking, take time to setup, meridian flip can be a pain, cable wrap not an issue
 - ► ALT-AZ: good tracking but field rotation, easy setup, full sky GOTO, have to watch for camera hitting mount, cable wrap can be a problem
- Most modern GOTO mounts can link to a computer, allowing control through your planetarium software
- Mount control data usually serial link or USB
 - ► N.B. the hand controller can be only ~10-15' from the mount, but the PC link can normally be much more

THE CAMERA

- Many options depending on your budget
 - webcam: cheap, simple, limited to solar system objects
 - security cams: bit more \$, solar system and limited DSOs
 - DSLRs & CCD imagers: some have live view capabilities but not optimized for it, solar system & limited DSOs
 - astro-video cams: models available optimized for solar system and/or DSO observing
- Camera requires a remote link for the video stream and for camera control
 - ▶ USB based cameras combine data & control into single cable, but tied to using a computer
- Good to start simple/cheap, then go for the Cadillac later after you know what you're doing!

THE DISPLAY

- Choice of display driven by camera choice:
 - ► Analog video use CRT or LCD monitor to view OR use video capture device to view on computer
 - ► USB camera need computer to view
- Need display at scope as well for star alignment, focusing, collimation, etc. (small LCD okay)
- Analog video (S-video or Composite), with well shielded cables, can be run up to 100's of feet
 - ► Even more using Cat6 cable baluns
- ▶ Basic USB limited to 10-15', but booster cables available to extend to ~100' or more
 - N.B. You'll likely need a powered USB hub at scope for long "boosted" cable runs

COMPUTER CONTROL

- Control of your mount & camera from a computer streamlines the process and adds capability
 - Controlling mount from planetarium software very powerful
 - Capture of video allows additional processing & archiving
- Need to manage 3 main data streams:
 - ► Control stream to/from mount (serial or USB)
 - Video stream from camera (analog or USB)
 - Control stream to/from camera (serial or USB)
- Adapters req'd for non-USB data streams
 - Video capture device for video
 - Serial-to-USB device for control
 - ▶ Both commercially available for low cost

FINDER SCOPE

- From my backyard it is too hard to do 3-star mount alignments, instead I do 1-star then "sync" my way from object to object
- Works well, but when GOTO is a big step often need finder scope to get properly sync'd
- Can do the same with RCO if have camera on finder scope as well
 - webcam will do, but only good for bright stars
 - MC Jr works excellently, showing even many DSO's in view
 - want wide field of view; >2° (focal length <150mm)</p>
 - want to be able to align finder with main scope
 - another video stream to display

FOCUSING

- For me focusing done at start of session, manually at scope
- Re-focusing may be required during session
 - change in ambient temperature
 - change of filters, reducers, or Barlows
 - random mirror or focuser shift
- Several electric focusers and associated software are available, designed to serve astro-imaging community
- Remote focusing a sexy option, but adds cost

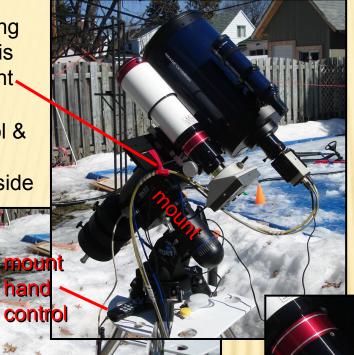
POWER SUPPLIES

- Many many options to power your RCO setup, try to keep it as simple as possible
- Try to keep all of your components a common supply voltage, eg. 12 VDC
- Using a single common power supply with a distribution hub can greatly simplify setup and cable management
- ► Take care to use properly grounded and fused power supplies, and protect them from the elements (dew/frost bad, surprise thunderstorms worse!)

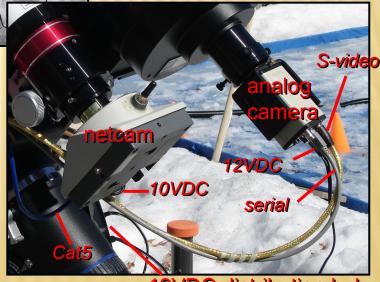
CABLES VS. WIRELESS

- ► I've tried both, and in the long run cables are far more reliable than wireless (and cheaper!)
 - Affordable wireless video transceivers prone to interference by phones, a/c motors, etc.
 - Professional grade S-video transceivers very expensive!
 - Wi-fi signal strength fluctuates with local interferences (again phones, a/c motors, etc.) and can drop links to devices
 - ► Wi-fi transceiver performance degrades with temperature, ceasing to work at all below ~ -15°C (in my experience)
 - Trouble shooting and general frigging around is far less with cables
- Do take the time to get good quality cables
 - eg. commercial Cat6 cable insulation cracks below -20°C

DEMONSTRATION

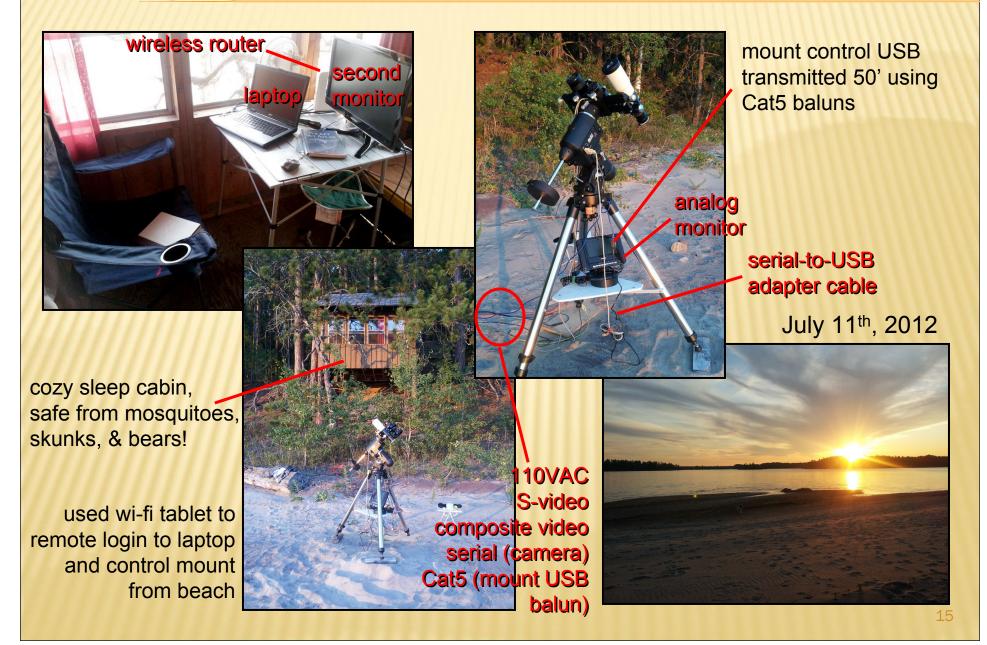

route cables along mount rotational axis to minimize movement.

monitor


common 12VD

supply

laptop provides mount control & camera display at scope that you remotely login to from inside



March 19th, 2011

12VDC distribution hub

DEMONSTRATION

