Understanding Astronomical Filters

Part II: How To Use Them

By: Jim Thompson Presented: RASC Ottawa, Feb.2020

Overview

3 Two-Part Filter Series...

- Part I: What Are They
 - What do they do
 - Different types
 - How they work
 - Nomenclature

Part II: How To Use Them

- Enhancing solar system observing
- Controlling light pollution
- Suggestions & things to remember

Part III: Special Filters

Solar System Observing

- Use filters to darken some features but not others
- Primarily using colour (absorption) type
- Filter choice very subjective:
 - A lot of trial-and-error req'd
 - Personal preference

Planetary Filters – The Long...

Object	Features	Recommended Filter	
Mercury	Planet/Sky Contrast	#23A Light Red	
	Features	#25 Red #29 Deep Red	
Venus	Clouds	#38A Deep Blue #47 Violet #58 Green	
	Planet/Sky Contrast	#25 Red #29 Deep Red	
	Terminator	#25 Red #29 Deep Red	
Moon	Detail	#56 Light Green	
	Feature Contrast	#8 Light Yellow #12 Yellow #15 Deep Yellow #80A Blue	
	Low Contrast Features	#82ALightBlue	
	Glare Reduction	ND13 Neutral Density Variable Polarizer	
Mars	Clouds	#15 Deep Yellow	
	Maria	#8 Light Yellow #15 Deep Yellow #11 Yellow-Green #21 Orange	

		#23A Light Red #25 Red #29 Deep Red
	Blue-Green Areas	#12 Yellow #23A Light Red
	Dust Storms	#38A Deep Blue #56 Light Green
	Polar Caps	#15 Deep Yellow #25 Red #29 Deep Red #47 Violet #56 Light Green #58 Green Deep Sky Filter
	Low Contrast Features	#82A Light Blue
Jupiter	Clouds	#11 Yellow-Green
	Belts	#8 Light Yellow #15 Deep Yellow #21 Orange #23A Light Red #25 Red #29 Deep Red #38A Deep Blue #56 Light Green #80A Blue
	Rilles	#80ABlue
	Festoons	#80ABlue
	Atmosphere	#56 Light Green

	Red-Orange Features	#12 Yellow
	Orange-Red Zonal	#8 Light Yellow
	Red/Blue Contrast	#11 Yellow-Green
	Blue/Light Contrast	#25 Red
	Great Red Spot	#38A Deep Blue #80A Blue
	Galilean Moon Transits	#25 Red #29 Deep Red
	Red/Blue/Light Contrast	#56 Light Green #58 Green
	Polar Regions	#21 Orange #23A Light Red
	Disc	#38A Deep Blue
	Low Contrast Features	#82A Light Blue
Saturn	Clouds	#11 Yellow-Green #12 Yellow #25 Red #29 Deep Red
	Belts	#15 Deep Yellow #21 Orange #23A Light Red #38A Deep Blue #58 Green

		#80ABlue
	Polar regions	#21 Orange #23A Light Red #58 Green #80A Blue
	Rings	#47 Violet
	Cassini Division	#11 Yellow-Green
	Red/Blue Contrast	#11 Yellow-Green
	Red/Orange Features	#12 Yellow
	Low Contrast Features	#82A Light Blue
Uranus	Dusky detail	#8 Light Yellow #15 Deep Yellow
Neptune	Dusky detail	#8 Light Yellow #15 Deep Yellow

Many recommendations available!

Planetary Filters – The Short...

- Stack of filters + amateur suggestions = science experiment
 - Magenta (CC20M, #47, #30) Mars, Jupiter
 - Red (#23, #25, #29) Moon, Mars
 - Light Tan/Orange (#81B, #85) Jupiter, Saturn
 - Variable Polarizer or ND Moon, Venus

Just want single all-purpose filter?
 Special type - "Moon & Skyglow" (Baader)

Planetary Filters vs. Aperture Filters block light...image is darker Limits use of some filters due to scope aperture

Solar System Imaging

 Contrast, colour, etc. all controlled in post processing

Main concern is "seeing"

- At a minimum UV/IR cut
- Or try longer wavelengths red or IR high pass (monochrome)

Good all-purpose planet/Moon imaging filter

"Moon & Skyglow" (Baader, UV/IR cut incl.)

Deepsky Observing Challenges Main concern is light pollution

Deepsky Object Spectra

Stars, galaxies, globular & open clusters, reflection nebulae = broad spectrum

 Emission nebulae (HII, planetary, super nova remnant) = narrow band

LP vs. Deepsky Object

Choosing a Deepsky Filter

- Like Planetary, want to increase contrast
- Interference type filters more capable
 - precise bandwidths & cut-offs
- Best filter to use depends on:
 - object type (galaxies, clusters, nebulae)
 - amount and type of light pollution
 - size & type of optics
 - tracking capability (video or imaging)

11

Types of Deepsky Filter - Broadband

- Large pass band around Hβ & O-III
- Meant for visual so often no Hα
- Can be sub-divided by band width:
 - Extra Wide (>70nm, %LT 62-73%)
 - Wide (50-70nm, %LT 45-62%)
 - Medium (35–50nm, %LT 30–45%)
 - Narrow (20-35nm, %LT 20-30%)
- Band width range supports range of apertures

Types of Deepsky Filter - Narrowband

- Narrow pass band around single wavelength:
 - Hβ (486.1), O–III (495.9 & 500.7), Hα (656.5), NII (658.4), or SII (672.4)
- Hα only for video or imaging, NII & SII only for imaging
- Range of band widths available:
 - Visual or Imaging 10-20nm (%LT 10-20%)
 - Imaging Only <10nm

Types of Deepsky Filter - Multiband

- Multiple pass bands / blocking bands
- Focus on discrete LP wavelengths
- Provide best white balance - liked by OSC imagers
- Overall LP reduction is moderate-to-poor
- Broadband LP sources greatly reduce effectiveness (eg. LED)
- Visual %LT 50-75%

Types of Deepsky Filter - Multi Narrowband

- Also called: duoband, tri-band, or quad-band
- Pass bands around more than one emission wavelength
- Maximize LP blocking when observing or imaging emission nebulae
- Recently become popular w/ OSC imagers
- Visual %LT 8-34%

Choosing a Deepsky Filter, cont'd

Object Type	Dark Sky	Light Polluted Sky	
Emission Nebulae (incl. planetary neb. & supernova remnants)	– Narrowest deepsky filter your aperture (visual) or mount tracking (video/imaging) will support. Adding IR cut can also help improve contrast with camera.		
Galaxies, globular clusters, open clusters, reflection nebulae	 Don't use filters visually. Adding IR cut can help contrast with camera. 	 No significant benefit visually. Video/imaging filters that pass IR are req'd, w/ wide to medium band pass filters working best. Even more contrast on galaxies w/IR high pass filters, but long exposure time req'd. 	

- Unfocused IR in refractors (video/imaging):
 - Most ED doublets and APO triplets not a problem
 - Commercial camera lenses (esp. security) usually need IR cut

Deepsky Filters vs. Aperture

Recall that filters make scene darker

- %LT of filter limits practical scope aperture for visual use
- no limit on aperture for video/ imaging

 compensate w/exposure time

Deepsky Filters & Exposure Time

- Darker background allows longer exposures to further increase image contrast
- Impact on exposure time is much greater for galaxies & reflection nebulae

Deepsky Filter Impact – Imaging

Medium Band + IR Cut

Narrow Tri-Band

Deepsky Filter Impact – Video

IDAS LPS-P2 (60sec INT, 0 BRT)

Meade O-III + BDRB (60sec INT, ~40 BRT)

Meade O-III + BDRB (60sec INT, ~70 BRT)

Semi-dark sky

(Petawawa) 3" refractor

Deepsky Filter Impact – Video

Dark sky

(Foymount)

UV/IR Cut & Achromats Dark sky (Foymount)

No Filters (20sec INT, 0 BRT)

Baader UV/IR Cut (45sec INT, 0 BRT)

- Captured w/achromatic Canon TV camera lens (17-102mm zoom)
- Unfocused IR very evident not simply bloated stars, fuzzy stars

Some Other Effects of Filters

- Adding filter will change white balance (WB)
 - Broadband = magenta, O-III = green, Hbeta = cyan, Halpha = red, IR pass = orangish-brown
 - Some filters provide better WB than others (eg. IDAS LPS-P2)
 - May not be able to completely correct for the filter (video/imaging)
- Filter glass another surface in optical train

- can cause reflections, better quality filters have antireflective coatings
- another surface upon which dirt, dust, or dew can settle – most evident with bright objects

You Get What You Pay For

- Tempting to buy cheapest, but quality suffers
 - reflections, de-lamination, poor machining, optical distortion, poor transmission

(Too) Many filter manufacturers available

- Premium (\$\$\$\$): Andover, Astrodon, Chroma, Custom Scientific, FLI, OPT Radian
- High Quality (\$\$\$): Astro Hutech, Astronomik, Baader, Lumicon, Televue
- Good Value (\$\$): 1000 Oaks, Meade, Optolong, Orion
- Discount (\$): Antares, Arcturus, DGM, Omega (on Ebay)
- Avoid: Canadian Telescope, Celestron, Kson, Olivon, Omegon, Optical Vision, Sirius, Svbony, Zhumell

Last words

- Feel free to experiment. Recommendations here are based on MY experience; yours may be different.
- Do not feel obligated to buy one of everything. Start with a good quality general purpose filter you can afford & build from there.
- For goodness sake HAVE FUN!
- Next time:
 - "Special" filters