How to Observe the Sun

An excerpt from OAWS#16

By Jim Thompson Spring 2017

Be Safe!

>½ of Sun's energy is infrared

 without proper protection you're literally cooking your eyes!

Anatomy of the Sun

- INTERIOR:
 - CORE: fusion engine (25% R_{sun})
 - > RADIATIVE: (25-75% R_{sun})
 - CONVECTIVE: (75-100% R_{sun})

EXTERIOR:

- PHOTOSPHERE: photons are finally free, what we see (peak emission)
- > CHROMOSPHERE: active lower atmosphere, neutral H exists, less bright than photosphere
- CORONA: low density upper atmosphere, much hotter than photosphere, much less bright than photosphere
- 1kyr to 1Myr for a photon produced in the core to make it to the photosphere

White Light Observing

view visual band at safe intensity several options available – use existing scope most economical way to observe Sun

oritastro.org/mercury2016

Rear Projection

- project image onto white background
- many people view at same time
- o not the best image see sunspots only
- use a junk eyepiece! (will get cooked)
- cheapest solution

www.starizona.com, www.365astronomy.com

Solar Filter

- glass or thin film blocks 99.999% of light
- attach over front of scope
- larger scopes use part-aperture
- improved image sunspots & some granulation
- reasonably affordable solution

naked eye solar glasses ~\$0-20

www.flickr.com/photos/alexandra4 Alexandra Hart

Herschel Safety Wedge

- wedge prism directs 4.6% to eye, rest out back
- insert into focuser, then eyepiece into wedge
- refractors only, 6" or smaller

۲

 \odot

- best image lots of sunspot & granule detail
 - most expensive solution (\$800 CAD)

White Light Observing – Examples

• FACULAE: local bright spots between granules,

LIMB DARKENING: gradual solar disk darkening as
 LIGHT BRIDGE/STREAMER: bright band cutting

nspots nto

Occioint II-K Observing view narrow (0.5-80Å) band in NUV (393-398nm) Use your existing scope + ERF (energy rejection filter) expensive way to "observe" Sun - camera only!

Screw-On Filter

- most affordable of methods (\$350)
- provides good images but not "the best"
- very flexible to use

Fixed Etalon

- etalon typically gives more accurate band pass than screw-on filter
- "can" give sharper image than screw-on
- only Lunt Ca-K module available, Coronado PST no longer for sale
- relatively expensive (\$800-2000)

R

daystarfilters.com

Adjustable Etalon

- use very accurate temperature controlled etalon
- provides excellent detai
- very expensive! (\$1200 6000)

Calcium II Observing – Examples

Baader Herschel Wedge + Omega Optical Ca-K

10

all images: J. Thompson

Hydrogen II-a Observing

Very narrow (0.3-0.7Å) band in dark red (656.28nm) all options require tuneable etalon $oldsymbol{0}$ o most expensive way to observe Sun - & most interesting

Tilt Tuned Etalon

- ۲
- ۲
- ۲
- ۲
- ۲

- **Dedicated H**α Scope
- \bigcirc
- \odot

much cheaper DIY tilt-tuned possible but poor performance

Temp. Tuned Etalon

- use very accurately controlled ۲ etalon (changes thickness with T)
- \bigcirc
- very expensive! (\$1200 16,000) ۲

Hydrogen II- α Observing – Examples

Corona Observing

1/1,000,000th as bright as photosphere
only opportunity to observe is during total eclipse
no filters regrd, chromosphere visible also

Totality or Bust

 Ottawa two day's drive from path of totality

 If you plan on making the trip, but haven't made plans yet...may be too late

 Next driving distance total eclipse: April 8, 2024, St. Lawrence Seaway

16

Questions?

